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Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and

therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were

used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones char-

acterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of

genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow

between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect

of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.
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The role of chromosomal rearrangements (such as Robertsonian

[Rb] fusions and fissions, translocations, and inversions) in spe-

ciation is much debated (e.g., White 1978; Coyne and Orr 2004).

Two main categories of models were developed to explain how re-

arrangements may promote genetic differentiation and therefore

facilitate speciation (Ayala and Coluzzi 2005). First, the “hy-

brid dysfunction” models suggest that changes in the karyotype

(i.e., chromosome number, chromosomal morphology) can cause

meiotic problems when heterozygous that will reduce the fertil-

ity and the reproductive fitness of heterozygous hybrids (White

1978; King 1993). Second, the “recombination suppression” mod-

els propose that recombination is reduced or suppressed in the

vicinity of the rearrangement (Noor et al. 2001; Rieseberg 2001;

Navarro and Barton 2003a,b). This reduction could favor spe-

ciation by reducing gene exchange in the region of the rear-

rangement, whereas gene flow in the rest of the genome is unre-

stricted. Although recombination models were mainly developed

thinking about inversions, they can also be applied to other cat-

egories of rearrangements such as Rb fusions, which are known

to reduce or suppress recombination in heterozygous Rb chromo-

some pairs (Davisson and Akeson 1993; Haigis and Dove 2003).

Although chromosomal speciation models have been addressed

in a variety of taxa (see for reviews Ayala and Coluzzi 2005;

Hoffman and Rieseberg 2008), the conclusions of these studies

are often questionable (Noor and Bennet 2009; Faria and Navarro

2010).

The shrews of the Sorex araneus group constitute a fascinat-

ing model to study the impact of chromosomal rearrangements

on gene flow. This group is characterized by extensive variation

in the autosomal karyotype, mainly attributed to Rb fusions, and

the chromosome arms are labeled from a to v according to a

nomenclature defined by Searle et al. (1991). In particular, al-

most 70 chromosomal races have been described in S. araneus

sensu stricto (Wójcik et al. 2003). These races share three pairs

of metacentrics (af , bc, and tu) and a sex chromosome trivalent

(X,Y1,Y2) whereas the remaining chromosome arms can be dif-

ferently rearranged among races. Thus, when comparing races,

chromosomes can be similarly arranged, or rearranged differently

into distinct metacentrics and acrocentrics (later designated “com-

mon” or “rearranged” chromosomes, respectively see Fig. 1).

Several hybrid zones between species or races have been de-

scribed within the S. araneus group (Searle and Wójcik 1998). The

karyotypic complexity encountered in hybrids is expected to vary

according to the level of differences between the two species or

races involved. For example, the hybrids produced in some zones

will carry only trivalents (i.e., simple heterozygotes) whereas hy-

brids in others will carry long chain of up to 11 chromosomes

(i.e., complex heterozygotes). In such situations, according to

chromosomal speciation models, gene flow should be lower in

situations with the highest chromosomal complexity and lower in

the proximity of rearranged regions (Basset et al. 2006a; Yannic

et al. 2009). Using microsatellite markers mapped at the chromo-

some level, these predictions were empirically confirmed in two

hybrid zones between S. araneus and S. antinorii (Basset et al.

2006a; Yannic et al. 2009) and in pairwise comparisons between

karyotypically distinct taxa with different levels of evolutionary

divergence (Basset et al. 2008). Yet no study has compared the im-

pact of chromosomal rearrangements on the gene flow in multiple

intraspecific hybrid zones of S. araneus. Such comparisons would

be of primary importance to further estimate the role of the rear-

rangements in the genetic diversification of the S. araneus group.

In this study, we investigated the impact of chromosomal re-

arrangements on gene flow in five hybrid zones with increasing

levels of karyotypic complexity due to different combinations of

rearrangements. The impact of rearranged chromosomes might

change according to the chromosome. Moreover, the position

within chromosomes is likely an important factor because the re-

combination rate varies along chromosomes (Borodin et al. 2008).

Nevertheless, although both of these factors could add noise

to our analyses and similarly to previous shrew studies (Basset

et al. 2006a, 2008), we considered the rearranged chromosomes

as a group. Our general predictions were thus, that if chromoso-

mal rearrangements affect genetic isolation: (1) gene flow should

be lower in the zones that present the most complex heterozygous

karyotypes and (2) gene flow between rearranged chromosomes

should be reduced compared to common chromosomes.

Material and Methods
SAMPLING AND HYBRID ZONES IDENTIFICATION

Five European intraspecific hybrid zones of S. araneus were ana-

lyzed in this study, for a total of 876 samples genotyped. Hybrid

zones were named according to the two different races involved

(Table 1). Samples were collected in the last decade and kary-

otypes were obtained for all shrews (except some individuals

from England). Each population was described as containing one

or two races.

Hybrid zones were characterized according to the meiotic

configurations expected in the hybrids (see Fig. 1). The most

simple hybrid zone was that with heterozygous individuals that

showed only meiotic “trivalent” configurations (formed when

the arms of three chromosomes pair during meiosis). The level

of complexity increased when configurations involved a higher

number of chromosomes (e.g., meiotic chain of five to 11 chro-

mosomes in hybrids; see Fig. 1).

DNA EXTRACTION AND MICROSATELLITE ANALYSIS

DNA was acquired from previous samplings or was newly ex-

tracted using the DNeasy Tissue Kit (Qiagen, Valencia, CA),
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Figure 1. Location of the five European hybrid zones of the Sorex araneus group used in the study and rearranged chromosomes of

each parental races and corresponding F1 hybrids. The most complex heterozygote configuration of F1 hybrids is indicated within each

rectangle. The chromosome arm localization of the markers of the rearranged chromosomes is indicated by asterisks. The position of

locus D24 is ambiguous (j or l chromosome arms) and therefore indicated in brackets.

following the manufacturer’s protocol. Sixteen microsatellite loci

were chosen among those unambiguously mapped at the chromo-

some level by Basset et al. (2006c), the letter in parentheses in-

dicating their chromosome localization: L69(f ), B3(f ), D107(a),

D112(a), L9(c), L68(b), C117(b), L13(de), C171(de), L57(de),

L62(g), D24(jl), D106(h), L99(n), B30(o), D109(o). No infor-

mation was available regarding the exact localization of the loci

within a chromosome. Each locus was part of either the common

or rearranged group depending on its chromosome localization

and the hybrid zone under study (Table 1; Fig. 1). When the same

metacentric was present in both races but polymorphic in at least

one race, the corresponding loci were classified as rearranged.

DNA was amplified according to protocols described in Wyt-

tenbach et al. (1997); Balloux et al. (1998); Lugon-Moulin et al.

(2000); and Basset et al. (2006a,b) in a final volume of 20 μl.

One primer of each pair was labeled with a fluorescent dye on

the 5′ end. The amplified products were detected on an ABI 3100

automatic sequencer (Applied Biosystems, Foster City, CA) and

allele sizes were analyzed using GeneMapper (Applied BioSys-

tems) followed by manual proofreading.

STATISTICAL ANALYSIS

The following analyses were performed for each hybrid zone

independently.

Genetic variability
Allele frequencies, allele numbers, observed heterozygosities

(HO), expected heterozygosities within (HS), and between (HT)

samples following Nei (1987) were calculated for each hybrid

zone using FSTAT version 2.9.4 (updated from Goudet 1995).

Heterozygote deficit within populations (FIS > 0) was tested using

a permutation procedure (10,000 randomizations) to infer random

mating. The exact G-test (Goudet et al. 1996), as implemented in

FSTAT 2.9.4, was used to assess the significance of genetic differ-

entiation. Comparison of number of alleles located on common

or rearranged chromosomes in each hybrid zone was performed

8 8 4 EVOLUTION MARCH 2012
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Table 1. List of the five hybrid zones with their corresponding level of complexity. The number of populations in each hybrid zones

“Npop” and the number of individuals per taxon “N” are indicated. “Rearranged markers” correspond to the loci that are located on

rearranged chromosomes for each zone.

Hybrid zone

Code name Complexity Taxon Npop N Rearranged markers

Dn–Ul 3 Drnholec 14 35 L62, D24, L99, D109, B30
Ulm 48
Hybrids 14

Ox–He 5 Oxford 46 52 D24, L99, D109, B30
Hermitage 97
Hybrids 92

To–No 9 Tomsk 24 61 L62, D106, D24, L99, D109, B30
Novosibirsk 113
Hybrids 20

Dn–Bi 10 Drnholec 9 49 L62, D106, D24, L99, D109, B30
Białowieża 60
Hybrids 31

Mo–Sl 11 Moscow 13 54 L62, D106, L99, D109, B30
Seliger 92
Hybrids 29

with Shapiro–Wilk to test for normality and then by Student’s

t-tests with R software (R Development Core Team 2010).

GENETIC STRUCTURE OVER EACH HYBRID ZONE

We analyzed genetic structure using estimates derived from

F-statistics according to Weir and Cockerham (1984), using

FSTAT version 2.9.4. Populations were then separated into single

races according to their karyotype (i.e., populations sharing indi-

viduals from the two races were divided into two populations of a

single race and hybrids or individuals with unknown karyotypes

were removed from the dataset) to assess structure within and

between the different taxa. Differentiation of populations within

taxa (intraracial, FSC) and between populations of the two taxa

(interracial, FCT; Weir 1996) was obtained using the software

package ARLEQUIN version 3.1 (Excoffier et al. 2005).

Estimates of FST and hierarchical FSC and FCT were mea-

sured across all loci but also across common and rearranged chro-

mosomes using FSTAT and ARLEQUIN, respectively. Differences of

genetic structure between common and rearranged chromosomes

were tested by a permutation test. A distribution of difference

between the two groups of chromosomes was generated by car-

rying out of 10,000 permutations of microsatellite loci between

the two groups and the observed difference was compared to this

distribution.

To test whether the interracial structure FCT was influenced

by the degree of hybrid zone complexity CX or the type of chromo-

somes CHR (i.e., common or rearranged), we compared several

mixed models as follows: a null model (Model 1), with no effect

of CHR and CX on FCT; the Model 2 tested the effect of CHR on

FCT; the Model 3, the effects of CHR and CX on FCT; the Model

4, the effects of CHR in interaction with CX on FCT; and finally

the Model 5 tested the effect of CX on FCT. Mixed models were

performed using the nlme package in R (Pinheiro et al. 2011) and

the five models were compared using a model selection proce-

dure based on corrected Akaike information criterion (AICc) as

implemented in the AICcmodavg package in R (Mazerolle 2011).

Analyses of variances were also used with R software to assess

whether the effects tested by each model were significant.

Results
GENETIC VARIABILITY

Basic population parameters for each hybrid zones are detailed in

Table S1.

GENETIC STRUCTURE OVER EACH HYBRID ZONE

Low but highly significant FST values were obtained in each hy-

brid zones (Table 2), suggesting a weak genetic structure. When

estimating hierarchical F-statistics (FSC and FCT), we found sig-

nificant FSC values that ranged from 0.013 to 0.036 (Table 2).

Genetic structure between races (FCT) was weak and nonsignifi-

cant in most hybrid zones (Table 2; Fig. 2). The detailed results

of hierarchical F statistics are shown on Table S2.

Values of FST estimated across rearranged or common chro-

mosomes were highly significant (Table 2; P < 0.001). In some

hybrid zones, the genetic structure estimated over rearranged and

common chromosomes gave contrasting results but differences

were never significant (Table 2). When measuring hierarchical

EVOLUTION MARCH 2012 8 8 5
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Table 2. Values of FST, FSC, and FCT per locus across common, rearranged, and all loci for each hybrid zone. The level of chromosomal

complexity of each hybrid zone is indicated in brackets.

Hybrid zone Locus FST Diff. FSC Diff. FCT Diff.

Dn–Ul (3) Common 0.030 ∗∗∗ 0.242 0.031 ∗∗∗ 0.370 0.003 NS 0.693
Rearranged 0.029 ∗∗∗ 0.040 ∗∗∗ 0.012 NS

Overall 0.030 ∗∗∗ 0.032 ∗∗∗ 0.002 NS

Ox–He (5) Common 0.033 ∗∗∗ 0.136 0.022 ∗∗∗ 0.830 0.003 ∗ 0.816
Rearranged 0.065 ∗∗∗ 0.041 ∗∗∗ 0.020 ∗∗

Overall 0.040 ∗∗∗ 0.026 ∗∗∗ 0.007 ∗∗

To–No (9) Common 0.035 ∗∗∗ 0.849 0.038 ∗∗∗ 0.784 0.005 NS 0.123
Rearranged 0.014 ∗∗∗ 0.013 ∗ −0.002 NS

Overall 0.027 ∗∗∗ 0.029 ∗∗∗ 0.003 NS

Dn–Bi (10) Common 0.033 ∗∗∗ 0.804 0.033 ∗∗∗ 0.737 0.009 ∗ 0.867
Rearranged 0.037 ∗∗∗ 0.044 ∗∗∗ 0.009 NS

Overall 0.035 ∗∗∗ 0.036 ∗∗∗ 0.009 ∗

Mo–Sl (11) Common 0.012 ∗∗∗ 0.701 0.016 ∗∗∗ 0.614 −0.001 NS 0.090
Rearranged 0.006 ∗ 0.003 NS 0.011 ∗∗

Overall 0.011 ∗∗∗ 0.013 ∗∗∗ 0.002 NS

Diff = difference between common and rearranged.

Asterisks indicate significant values for the estimators: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; NS, not significant.

F-statistics over common and rearranged chromosomes, we found

no significant differences for values of population differentiation

within races FSC and between races FCT (Table 2; Fig. 2).

COMPARISONS BETWEEN HYBRID ZONES

Neither the level of complexity nor the type of chromosomes

had an effect on the genetic differentiation between races. Our

analysis detected the null model (model 1, with no effect of the

chromosomes or the level of complexity) as best fitting (min-

imized AICc = −396.42, Table S3). The �AICc for model 1

versus model 5 was < 2, but there was no effect of the level

of complexity on FCT (F1,3 = 0.269, P = 0.64). There was

also no effect of the types of chromosomes (F1,70 = 0.020,

P = 0.89).
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Discussion
Our study of five karyotypic S. araneus hybrid zones exhibit-

ing increasing levels of karyotypic complexity showed that these

zones exhibit similarly low levels of gene flow even in the zones

with the highest level of complexity. Moreover, no difference be-

tween common and rearranged chromosomes could be detected

in any of the zones. These results suggest that chromosomal rear-

rangements do not have a strong impact on the structure of these

zones and contrast with previous observations in the same group

of shrews (Basset et al. 2006a; Yannic et al. 2009) and in various

taxa such as sunflowers, flies, or house mice (e.g., Rieseberg et

al. 1999; Machado et al. 2002; Franchini et al. 2010). Several

nonexclusive factors could explain the differences between our

results and theoretical expectations.

First, although several studies in S. araneus showed levels

of nondisjunction or germ cell death high enough to affect the

fertility of heterozygotes (e.g., Jadwiszczak and Banaszek 2006),

the data suggest that Rb heterozygotes do not suffer from infertil-

ity as substantially as other taxa (Searle 1993; Narain and Fredga

1997; Banaszek et al. 2000) and that hybrid individuals forming

long chain of chromosomes are not sterile (Jadwiszczak and Ba-

naszek 2006). Thus, the impact of chromosomal rearrangements

in S. araneus might be less important than in other taxa.

Second, demographic, geographic, or historical factors might

have a stronger effect than chromosomes in structuring the hybrid

zones. In agreement with previous studies (Andersson et al. 2004;

Jadwiszczak et al. 2006; Lundqvist et al. 2011; Moska et al. 2011),

we observed a low genetic differentiation among chromosomal

races of S. araneus. This low genetic differentiation might be

explained by the recentness of chromosome differentiation, as

karyotypic evolution was proposed to occur between 15,000 and

7000 years ago in the S. araneus group (Searle 1984; Wójcik

1993). Moreover, chromosome differentiation was hypothesized

to be a fast process (Andersson et al. 2005; Lundqvist et al. 2011),

which could be largely independent of the genetic differentiations

acquired in allopatry during the last glaciations (e.g., Taberlet

et al. 1994). In addition, recent common ancestry from a shared

glacial refugium may also explain a low genetic differentiation

(Jadwiszczak et al. 2006; Lundqvist et al. 2011).

Third, we considered in our study that the impact of re-

arrangements would affect globally all the rearranged chromo-

somes. This is a rough proxy and rearranged chromosomes are

certainly not affected identically by rearrangements. However, a

similar approximation had already been used at interspecific level

(Basset et al. 2006a, 2008; Yannic et al. 2009) and the results of

these studies confirmed the impact of chromosomal rearrange-

ments on the S. araneus group differentiation. Additionally, Rb

heterozygotes (i.e., the presence of a chromosomal arm in ei-

ther the acrocentric or metacentric state within the same race)

may occur in each karyotypic race (Wójcik et al. 2002). These

heterokaryotypes may have a nonnegligible impact on gene ex-

change by diluting or increasing the divergence between races.

This effect might be strong in zones with high frequency of Rb

polymorphism (i.e., Ox–He hybrid zone, Hatfield et al. 1992)

but it could be neglected in other hybrid zones with very low

frequency of polymorphism (i.e., Dn–Bi, Wójcik et al. 2002).

Fourth, the Sorex genetic markers are only mapped at the

chromosome level and no information is available about local-

ization within a chromosome. The position within chromosomes

might be an important parameter because the recombination rate

varies along chromosomes and according to the chromosomal

configuration (acrocentric vs. metacentric; Borodin et al. 2008).

The impact of the position within rearranged chromosomes has

for example been confirmed in several house mouse chromoso-

mal hybrid zones (Panithanarak et al. 2004; Franchini et al. 2010).

Finally, at the low genetic differentiation observed in these hybrid

zones, it might be necessary to have a larger microsatellite reso-

lution to detect a subtle impact of chromosomal rearrangements.

In conclusion, and in contrast to what was observed at the

interspecific level (i.e., Basset et al. 2006a; Yannic et al. 2009), our

data did not confirm the impact of chromosomal rearrangements

on the genetic differentiation between the karyotypic races of

S. araneus. Although equating a low FST or FCT with extensive

gene flow should be done with caution (e.g., see Holsinger and

Weir 2009), the effect of chromosomal rearrangements might

be negligible—or at least undetectable—within the genetically

homogeneous S. araneus species. Further studies are necessary

to understand the real impact of chromosomal rearrangements on

the genetic differentiation of the group.
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