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Abstract

Amplified sequences constitute a large part of mammalian
genomes. A chromosome 1 containing 2 large (up to 50 Mb)
homogeneously staining regions (HSRs) separated by a
small inverted euchromaticregion is presentin many natural
populations of the house mouse (Mus musculus musculus).
The HSRs are composed of a long-range repeat cluster,
Sp100-rs, with a repeat length of 100 kb. In order to under-
stand the organization and function of HSRs in meiotic chro-
mosomes, we examined synapsis and recombination in male
mice hetero-and homozygous for the HSR-carrying chromo-
some using FISH with an HSR-specific DNA probe and immu-
nolocalization of the key meiotic proteins. In allhomozygous
and heterozygous pachytene nuclei, we observed fully syn-
apsed linear homomorphic bivalents 1 marked by the HSR
FISH probe. The synaptic adjustment in the heterozygotes
was bilateral: the HSR-carrying homolog was shortened and
the wild-type homolog was elongated. The adjustment was
reversible: desynapsis at diplotene was accompanied by
elongation of the HSRs. Immunolocalization of H3K9me2/3
indicated that the HSRs in the meiotic chromosome retained

the epigenetic modification typical for C-heterochromatin in
somatic cells. MLH1 foci, marking mature recombination
nodules, were detected in the proximal HSR band in hetero-
zygotes and in both HSR bands of homozygotes. Unequal
crossing over within the long-range repeat cluster can cause
variation in size of the HSRs, which has been detected in the
natural populations of the house mouse.

© 2021 S. Karger AG, Basel

Introduction

Amplified sequences comprise a large part of mamma-
lian genomes [de Koning et al., 2011]. They vary in adap-
tive significance of their template, copy number, and ge-
nome distribution [Santarius et al., 2010]. Homoge-
neously staining regions (HSRs) present a textbook
example of a massive amplification of genes that provide
a strong selective advantage to their carriers [Gollin,
2013]. HSRs usually occur during cancer progression and
in cell cultures as chromosome segments of various length
that show uniform staining after GTG- or C-banding and
FISH with a DNA probe to the amplified sequence [Stor-
lazzi et al., 2010; L’Abbate et al., 2014]. Occurrence and
stable inheritance of HSRs containing amplifications of
several insecticide resistance genes has also been de-
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Fig. 1. Idiograms of the standard (top) and rearranged (bottom)
chromosome 1 of Mus musculus musculus. Letters inside the idio-
grams show GTG-bands and homogeneously staining regions
(HSRs), letters below show the regions measured at synaptonemal

scribed in natural populations of mosquitos [Hemingway
etal., 2004].

The adaptive significance of large HSRs (50-100 Mb)
widespread in many natural populations of the house
mouse (Mus musculus) remains unclear. They are local-
ized in the chromosome 1 and comprise 30-60% of its
length [Traut et al., 1984; Borodin et al., 1990b; Winking
et al., 1991; Agulnik et al., 1993a]. The HSRs are com-
posed of multiple partial copies of the Ifi75 gene (inter-
feron-induced protein 75, which is likely involved in in-
nate immunity) and a chimeric Sp100-rs gene that result-
ed from fusion of a truncated copy of the Sp100 gene
(interferon-stimulated antigen) with the Csprs gene of
unknown function [Weichenhan et al., 1998].

A single HSR located at the proximal half of chromo-
some 1 is characteristic of M. musculus domesticus [ Traut
etal., 1984; Winking et al., 1991; Hiibner et al., 1994]. The
aberrant chromosome 1 of M. m. musculus contains 2
HSRs separated by an inverted euchromatic region
(Fig. 1) [Agulnik et al., 1988; Borodin et al., 1990b; Wink-
ing et al., 1991; Traut et al., 1999]. Comparative analysis
of GTG-banding of the rearranged chromosome 1 be-
tween subspecies suggests that the double-band HSR
chromosome could arise from the single-band HSR chro-
mosome via a single inversion with a proximal break-
point inside the HSR and a distal one between bands E3
and E4 [Agulnik et al., 1988, 1990b]. Both subspecies
show a wide variation in the HSR length [Agulnik et al.,
1993a; Yakimenko and Korobitsyna, 2007]. Strong fe-
male meiotic drive in favor of the rearranged chromo-
some has been detected in some populations of M. m.
domesticus and M. m. musculus [Agulnik et al., 1990a,
1993¢; Weichenhan et al., 1996].
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complex spreads. P, proximal euchromatic region; HSR-P, proxi-
mal HSR; I, inverted euchromatic region; HSR-D; distal HSR; D,
distal euchromatic region. Arrows indicate the orientation of the
regions (wild type vs. inverted).

The aberrant chromosomes are widely distributed all
over the areas of both subspecies: in Europe and America
in M. m. domesticus, and in Northern Asia in M. m. mus-
culus [Agulnik et al., 1988, 1993b]. The frequency of the
chromosome in local populations varies from 0.04 to 0.81
in M. m. domesticus and from 0.04 to 0.51 in M. m. mus-
culus. The frequency of homozygotes in the populations
studied was always lower than expected under Hardy-
Weinberg assumption [Agulnik et al., 1993b]. The defi-
ciency of the homozygotes was apparently due to their
low fertility and reduced viability [Agulnik et al., 1993c,
d; Sabantsev et al., 1993].

Analysis of organization and function of HSRs in mei-
otic chromosomes is important for understanding their
transmission across generations. Meiosis in heterozy-
gotes and homozygotes for both variants of the rear-
ranged chromosome has been studied previously using
conventional light and electron microscopy [Borodin et
al., 1990b].

It has been shown that the HSR-carrying chromosome
usually undergoes a synaptic adjustment in almost all
spermatocytes and in most oocytes of the heterozygous
carriers. In mid-pachytene cells, both lateral elements of
the synaptonemal complex (SC) were of the same length
and formed linear homomorphic bivalents, while at the
earlier stages of meiotic prophase (late zygotene to early
pachytene), a fraction of germ cells contained heteromor-
phic bivalents with D-loops, which apparently involved
HSR chromatin [Borodin et al., 1990a, b; Winking et al.,
1993]. However, the methods used in the early studies did
not allow reliable identification of the chromosome 1 in
the SC spreads. Borodin et al. [1990a, b] assumed that the
largest SC in the set was the SC1, although a correspon-
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Fig. 2. Identification of the rearranged
chromosome 1 in blood smear (a), bone
marrow metaphase spread (b), and synap-
tonemal complex spreads at diplotene (c,
d) in males heterozygous (a-c) and homo-
zygous (d) for the homogeneously staining
region (HSR) after FISH with DNA probe
to HSRs (green), DAPI staining (blue), and
immunolocalization of SYCP3 (red). Ar-
rowheads point at the rearranged chromo-
some 1. Scale bar, 10 pm.

dence between the relative length of mitotic chromo-
somes and the SC is rather vague [Froenicke et al., 2002].
Winking et al. [1993] marked the chromosome 1 by rob-
ertsonian translocation, which might modify the initia-
tion and completion of synapsis in the fused chromo-
some. Recombination in the rearranged chromosome
was examined by linkage analysis [Borodin et al., 1990b]
and chiasma mapping [Gorlov et al., 1993]. The former
approach focused on narrow genomic regions and could
not estimate the recombination landscape of the whole
chromosome, the latter was unable to estimate the exact
location of the recombination events in relation to HSRs.

In this study, we re-examined the meiotic behavior of
the rearranged chromosome in heterozygous and homo-
zygous male mice using FISH with an HSR-specific DNA
probe and immunolocalization of the key meiotic pro-
teins. The FISH probe enabled unequivocal identification
of the HSR in chromosome 1 at all stages of the cell cycle
(Fig. 2). Immunolabeling with SYCP3 (the main protein
of the lateral element of the SC) visualized meiotic chro-
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mosome axes. Immunolocalization of MLH1 (a marker
of mature recombination nodules) enabled precise map-
ping of recombination events along the SC1 and exact
identification of the pachytene stage. Antibodies to his-
tone H3K9me2/3 were used to detect transcriptionally in-
active heterochromatin.

Here, we addressed the following questions: How does
synaptic adjustment affect hetero- and euchromatic re-
gions of the HSR chromosome in heterozygotes? Does it
also involve elongation of the euchromatic regions of the
wild-type partner? Is recombination possible within
HSRs in homozygotes and heterozygotes?

Materials and Methods

Animals

The male founder of the stock was trapped in the village Koly-
vanskoe (Altai district, 53°02'22.6"'N; 82°52'11.6"E) and crossed
to C57BL/6] females. Karyotyping of their progeny indicated that
the male was heterozygous for the double-band HSR chromosome,
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Fig. 3. Synaptonemal complexes at different stages of meiotic prophase in a male heterozygous for the rearranged
chromosome 1 after immunolocalization of SYCP3 (red), DAPI staining for centromere heterochromatin (blue),
and FISH with a DNA probe to the homogeneously staining regions (HSRs; diffuse green). a Zygotene. b Pachy-
tene. ¢ Diplotene. Scale bar, 10 pm.

characteristic for M. m. musculus. The rearranged chromosome
was transferred to C57BL/6] background by a series of backcross-
es with heterozygotes for HSR. HSR carriers were identified by
FISH on blood smears (Fig. 2a) or bone marrow spreads (Fig. 2b)
with the probe Dist1 which had been prepared earlier by microdis-
section of the distal part of the rearranged chromosome 1 followed
by DOP-PCR as described previously [Torgasheva et al., 2013].
The DNA fragments were labeled with TAMRA-dUTP in 17 ad-
ditional PCR cycles, and FISH was carried out according to a stan-
dard protocol [Trifonov et al., 2017].

Six males of the mutant stock HSR/Icg (3 heterozygotes and 3
homozygotes for HSR) were used in this study. The animals were
housed conventionally with a free access to food and water in the
animal facility of the Institute of Cytology and Genetics.

SC Spreading and Immunostaining

Chromosome spreads were prepared from the testes of adult
males by the drying-down method [Peters et al., 1997]. Immuno-
staining was carried out according to the protocol described by
Anderson et al. [1999] using rabbit polyclonal anti-SYCP3 (1:500),
mouse monoclonal anti-SYCP3 (1:100), mouse monoclonal anti-
MLHI1 (1:30), rabbit monoclonal H3K9me2/3 (1:100) primary an-
tibodies (all from Abcam, Cambridge, UK) and human anti-cen-
tromere (ACA) primary antibodies (1:100; Antibodies Incorpo-
rated, Davis, CA, USA). The secondary antibodies used were
Cy3-conjugated goat anti-rabbit (1:500), FITC-conjugated goat
anti-mouse (1:30), and AMCA-conjugated donkey anti-human
(1:40) antibodies (all from Jackson ImmunoResearch, West Grove,
USA). Antibodies were diluted in PBT (3% bovine serum albumin
and 0.05% Tween 20 in PBS). A solution of 10% PBT was used for
blocking. The slides were incubated with primary antibodies over-
night in a humid chamber at 37°C, and with secondary antibodies
for 1 h at 37°C. Slides were then mounted in Vectashield antifade
mounting medium (Vector Laboratories, Burlingame, USA) to re-
duce fluorescence fading. The preparations were visualized with
an Axioplan 2 microscope (Carl Zeiss) equipped with a CCD cam-
era (CV M300, JAI Corporation, Yokohama, Japan), CHROMA
filter sets, and ISIS4 image-processing package (MetaSystems
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GmbH, Altlussheim, Germany). The location of each imaged im-
munolabeled spermatocyte spread was recorded so that it could be
located on the slide after FISH. After acquisition of the immuno-
fluorescence signals, the preparations were subjected to FISH with
the probe Distl according to a standard protocol.

Measurements and Statistical Analyses

A total of 192 pachytene cells were examined (about 30 per
mouse). We also analyzed 10 zygotene and 31 diplotene nuclei of
heterozygous males. The centromeric ends of the SCs were identi-
fied as bright DAPI-positive clouds of AT-rich heterochromatin
(Fig. 2¢, d) or by AMCA-labeled secondary antibodies bound to
ACA (Fig. 5). SC1 and HSR chromatin were identified by the probe
Distl (Fig. 2¢, d). At the diplotene stage, with partial desynapsis of
the lateral elements, we could distinguish heterozygotes from ho-
mozygotes for HSR. The former displayed HSR FISH signal at one
axis (Fig. 2c), the latter at the both of them (Fig. 2d). Using Micro-
Measure3.3 (https://micromeasure.software.informer.com), we
measured the total length of SC1 and its 5 regions (P, proximal
euchromatic; HSR-P, proximal HSR; I, inverted euchromatic;
HSR-D, distal HSR; and D, distal euchromatic) (Fig. 1) and esti-
mated the frequency of MLH1 foci located in each region.

Statistica 6.0 software package (StatSoft, Tulsa, OK, USA) was
used for descriptive (mean and standard deviation, SD) statistics
and non-parametric statistics (Mann-Whitney U test and Wilcox-
on signed rank test).

Results

Synapsis in Heterozygous and Homozygous

Spermatocytes

In all examined heterozygous and homozygous pachy-
tene nuclei (99 and 93, respectively), we observed a com-
pletely synapsed linear homomorphic SC1 marked by the
HSR FISH probe. No heterozygous nuclei containing an
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Table 1. Length of the SC1 regions in heterozygous and homozygous spermatocytes

Region Pachytene, pm Zygotene, pm Diplotene, um
Heterozygotes = Homozygotes Heterozygotes (HSR- Heterozygotes (HSR-
(n=99) (n=93) carrying lateral element) carrying lateral element)

(n=10) (n=31)

p 4.5+1.1 4.9+1.1° 7.441.3> 5.1+0.8%4

HSR-P 1.240.4 1.240.8 1.940.3 1.8+0.454

I 1.6+0.4 2.2+0.8* 2.2+0.4° 1.4+0.4¢

HSR-D 1.1+0.4 1.6+0.6* 1.9+0.5° 1.8+0.44

D 4.1+0.9 3.7+1.6* 5.7+0.8> 5.1+1.4¢

Total 12.5+2.0 13.6+3.8 19.1+1.7° 15.2+1.0¢

Data are presented as means + SD. * Significant differences heterozygotes versus homozygotes at pachytene,
Mann-Whitney U test, p < 0.01. ® Significant differences heterozygotes at pachytene versus heterozygotes at
zygotene, Mann-Whitney U test, p < 0.01. ¢ Significant differences heterozygotes at pachytene versus heterozygotes
at diplotene, Mann-Whitney U test, p < 0.01. ¢ Significant differences heterozygotes at zygotene versus
heterozygotes at diplotene, Mann-Whitney U test, p < 0.01.

SC1 with expected D-loop or inversion loop were ob-
served (Fig. 3b). At this stage, the HSR chromatin painted
by FISH probe appeared as a beam of DNA fibers diverg-
ing from 2 regions in the middle of SC1.

We did not detect significant differences in the total
length of SC1 and in the length of the proximal HSR block
between heterozygotes and homozygotes. However, the
heterozygotes had a significantly shorter distal HSR block
and proximal and inverted euchromatic regions and lon-
ger distal euchromatic region (Table 1).

We tried to trace the dynamics of synapsis and synap-
tic adjustment in the heterozygotes for HSR. Zygotene
nuclei were rather rare in our SC preparations. In all 10
zygotenes in which we were able to trace the lateral ele-
ment carrying HSRs and its standard partner, we ob-
served an excessive asynapsis in HSRs. Other chromo-
somes also showed asynapsis at this substage (Fig. 3a).
The lateral element carrying HSRs was significantly lon-
ger than its partner (19.1 + 1.7 um vs. 17.1 + 2.2 um; Wil-
coxon signed rank test, p < 0.01). It was also significantly
longer than SC1 at pachytene (Table 1). In our case,
pachytene SC1 comprised 65% of the length of the zygo-
tene HSR-carrying lateral element. The shortening of its
separate regions was rather even: from 58 to 73% of their
zygotene size.

In 31 heterozygous diplotenes examined, we observed
an extensive desynapsis in the middle of SC1 (Fig. 3c).
The lateral element carrying HSRs was significantly lon-
ger than the wild-type lateral element (15.2 + 1.0 pm vs.
12.6 + 1.2 um; Wilcoxon signed rank test, p < 0.01). It was
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also significantly longer than SC1 at pachytene (Table 1).
The elongation of its separate regions was uneven. [t was
higher in both HSRs (151 and 160% of pachytene length)
than in the proximal and distal euchromatic regions (115
and 123%). The inverted euchromatic region was shorter
at diplotene than at pachytene (90%).

These data indicate that synaptic adjustment between
the HSR-carrying and wild-type chromosome 1 is bilat-
eral. [t involves both shortening of the HSRs and an elon-
gation of the wild-type homolog. The adjustment is re-
versible. Desynapsis at diplotene is accompanied by high-
er elongation of the HSRs in the lateral element compared
with its euchromatic regions.

Epigenetic Modification of HSR in Spermatocytes

We observed a heavy labeling of HSRs with antibodies
to histone H3K9me2/3 at the meiotic chromosomes
(Fig. 4). The signal at the HSR was as strong as at the peri-
centromeric heterochromatin. This indicates that the
HSRs remain heterochromatic and transcriptionally in-
active in the meiotic cells.

Recombination in Heterozygous and Homozygous

Spermatocytes

Homozygous and heterozygous spermatocytes did not
differ from each other in the number of MLH1 foci at the
SC1 (1.41 + 0.50 and 1.53 + 0.49, Mann-Whitney U test,
p =0.2). Both homozygotes and heterozygotes had peaks
of MLH1 foci at distal and proximal euchromatic regions
(Fig. 5a, b, 6). In the homozygotes, 10% of MLHI1 foci
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Fig. 4. Pachytene spermatocyte of a mouse
heterozygous for the rearranged chromo-
some 1 after immunolocalization of his-
tone H3K9me2/3 (green) and synaptone-
mal complexes (red) (a) and FISH with the
DNA probe to the homogeneously staining
regions (HSRs; diffuse red) and DAPI
staining for centromere heterochromatin
(blue) (b). Arrowhead points at the rear-
ranged chromosome 1. Scale bar, 10 um.

were located in the inverted region (Fig. 5¢). This cor-
roborates published data on chiasma number and distri-
bution [Borodin et al., 1990b; Gorlov et al., 1993]. In the
previous study, chiasmata in the inverted region had been
found in homozygotes, but not in heterozygotes [Agulnik
etal., 1993c]. Here, to our surprise, we detected 1 cell with
MLHI1 focus in the inverted region in the heterozygous
spermatocyte as well (Fig. 5d). Moreover, we also ob-
served unexpected MLH]1 fociin the HSRs, both in homo-
and heterozygotes (Fig. 5e). This indicates that the synap-
tic initiation and crossing over occur in these heterochro-
matic regions.

Discussion

Analysis of synapsis and recombination of the chro-
mosome 1 in hetero- and homozygous male carriers of
double-band HSRs resulted in several findings important
for the understanding of the structure and function of
highly amplified DNA sequences in the meiotic chromo-
somes.

We confirmed previous discoveries done by electron
microscopic analysis of SCs in the HSR heterozygotes
[Borodin et al., 1990a, b; Winking et al., 1993]. HSRs un-
dergo synaptic adjustment in the heterozygous males.
FISH with an HSR DNA probe enabled us to trace the dy-
namics of this process and revealed that synaptic adjust-
ment in males is bilateral and reversible. It involves both
shortening of the HSR-carrying lateral element and the
elongation of the wild-type partner. Equalization of the
chromosome axes was first described by Moses et al. [1985]
in mice heterozygous for tandem duplication. Pronounced
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equalization has been observed at the ZW sex bivalent in
female birds [Solari, 1992; Torgasheva and Borodin, 2017].
We found that the equalization is reversible. HSR-linked
segments restore their original size after chromosome de-
synapsis at diplotene. A decrease of the SC length from
zygotene to pachytene and its restoration at diplotene is a
well-known phenomenon [Goetz et al., 1984]. Our results
indicate that these changes are not uniform along the SC
lateral elements. The degree of contraction-expansion de-
pends on the genetic content of the chromatin linked to
particular segments of the chromosome axes. This result
corroborates the suggestion about unequal contribution of
eu- and heterochromatin in SCs [Stack and Anderson,
2001; Belonogova and Borodin, 2010].

Our results on immunolocalization of H3K9me2/3 in-
dicate that in the meiotic chromosome HSRs retain the
epigenetic modification characterizing C-heterochroma-
tin in somatic cells.

Surprisingly, the heterochromatic state of HSRs does
not impede their involvement in homologous synapsis
and recombination. Occurrence of MLHI foci inside
both HSRs in the homozygotes is a direct evidence of ho-
mologous recombination. Crossing over in the proximal
HSR in the heterozygotes is especially interesting. The
presence of multiple copies (60 to 200) of long-range re-
peat cluster Sp100-rs with a repeat length of 100 kb in the
wild-type chromosome 1 makes such recombination pos-
sible. Recombination in these regions composed of mul-
tiple repeated sequences might lead to unequal crossing
over, which in turn should produce deletions and dupli-
cations within the cluster, generating a variation in HSR
size in the aberrant chromosomes and the number of cop-
ies of the repeat cluster in the wild-type chromosome.
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Field studies demonstrated a wide variation in the size
of HSRs in both subspecies. The size of the single-band
HSR in M. m. domesticus varied from 6 to 30% and the
size of the double-band HSRs in M. m. musculus from 30
to 70% of the wild-type chromosome 1 length [Traut et
al; 1984; Winking et al; 1991; Agulnik et al; 1993b; Yaki-
menko and Korobitsyna, 2007]. The variation in the
proximal HSR is more pronounced. It usually has more
sub-blocks than the distal one [Yakimenko and Korobit-
syna, 2007]. It has been suggested that such variation
could be due to “unequal recombination either by cross-
ing over or sister chromatid exchange” [Winking et al.,
1991]. Our data indicate that crossing over does occur in
both HSRs in the homozygotes and in the proximal HSR
in heterozygotes.

Another surprise of this study was the detection of an
MLHI focus in the inverted region in SC1 in an HSR het-
erozygote. Because we observed only one such SC, this
result should be considered with caution. It can be an ar-
tifact either of immunolabeling or of FISH (e.g., a lateral
shift of HSR chromatin loops). The other possibility is
that an inversion might have occurred in the inverted re-
gion, restoring collinearity and normal recombination in
this region between HSR-carrying and wild-type chro-
mosomes. This seems unlikely, because in this case re-
combination in this region would produce chromosomes
with single HSRs, distal or proximal. Such chromosomes
have never been observed in population or in laboratory
studies.

Occurrence of MLH1 foci in an inverted region of the
linear SC heterozygous for the large paracentric inversion
in chromosome 1 of the house mouse has been demon-
strated by Torgasheva et al. [2013]. They suggested that
such configurations occur due to synaptic adjustment of
the inversion loop with crossing over in the middle of the
loop. These events are rather rare and will result in gam-
etes carrying crossover chromosomes with the large dele-
tions and duplications leading to nonviable embryos.
Thus, recombination in the inverted region is most likely
suppressed in the heterozygotes, but is possible in homo-
zygotes. Nevertheless, the frequency of homozygotes in
the natural populations of M. m. musculus is negligible.

Fig. 5. Recombination nodules detected at bivalent 1 in pachytene
spermatocytes by immunolocalization of MLH1 (green), SYCP3
(red), ACA (blue), FISH with the DNA probe to the homogeneous-
ly staining region (HSR; diffuse green). a, b Recombination out-
side the rearranged regions in homozygotes (a), in heterozygotes
(b), in the inverted region in homozygotes (c), in heterozygotes
(d), and in the HSR in heterozygotes (e). Scale bar, 10 um.
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Fig. 6. Frequency of MLH1 foci in separate
regions of SC1 in pachytene spermatocytes
of heterozygotes (blue) and homozygotes
(orange) for the rearranged chromosome 1.
P, proximal euchromatic region; HSR-P,
proximal homogeneously staining region;
I, inverted euchromatic region; HSR-D;
distal homogeneously staining region; D,
distal euchromatic region.

Frequency of MLH1 foci at SC1

HSR-P |

In a wide population study, Yakimenko and Korobitsyna
[2007] examined a total of about 700 mice from various
populations and found only 4 homozygotes among them
(about 0.5%). We estimated the probability of recombi-
nation in the inverted region as 0.1. This means that re-
combination in the inverted region is extremely rare.
Therefore, this region should accumulate a genetic load
via Muller’s ratchet mechanism [Gabriel et al., 1993]. This
in turn would lead to a reduced fitness of the HSR homo-
zygotes. Indeed, a decreased fertility and viability of the
homozygotes has been reported previously [Agulnik et
al., 1993c, d; Sabantsev et al., 1993]. Direct comparative
analysis of the genetic content of the inverted region in
HSR homozygotes and its homolog in the wild-type chro-
mosome 1 should shed some light on the dynamics of ac-
cumulation of genetic load in nonrecombining chromo-
some regions.
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